Search results for " rectifiability"

showing 7 items of 7 documents

Singular integrals on regular curves in the Heisenberg group

2019

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

Applied MathematicsGeneral Mathematics42B20 (primary) 43A80 28A75 35R03 (secondary)Metric Geometry (math.MG)Singular integralLipschitz continuityuniform rectifiabilityHeisenberg groupFunctional Analysis (math.FA)ConvolutionBounded operatorMathematics - Functional AnalysisCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupsingular integralsBoundary value problemKernel (category theory)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups

2020

We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.

Class (set theory)Pure mathematicsControl and OptimizationCarnot groups calibrations nonlocal perimeters/ Γ-convergence sets of finite perimeter rectifiabilityMathematics::Analysis of PDEssets of finite perimetervariaatiolaskentaComputer Science::Computational Geometry01 natural sciencesUpper and lower boundsdifferentiaaligeometriasymbols.namesakeMathematics - Analysis of PDEs510 MathematicsMathematics - Metric GeometryComputer Science::Logic in Computer ScienceConvergence (routing)FOS: MathematicsMathematics::Metric Geometry0101 mathematicscalibrationsMathematicsnonlocal perimeters010102 general mathematicsrectifiabilityryhmäteoriaMetric Geometry (math.MG)matemaattinen optimointi010101 applied mathematicsComputational MathematicsΓ-convergenceΓ-convergenceCarnot groupsControl and Systems EngineeringsymbolsCarnot cycleAnalysis of PDEs (math.AP)ESAIM: Control, Optimisation and Calculus of Variations
researchProduct

Uniform rectifiability implies Varopoulos extensions

2020

We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…

Dirichlet problemosittaisdifferentiaaliyhtälötPure mathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsepsilon-approximabilityBoundary (topology)Codimensionharmonic measureharmoninen analyysiMeasure (mathematics)uniform rectifiabilityCarleson measureMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsNorm (mathematics)solvability of the Dirichlet problemClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereRectifiable setCarleson measure estimateAnalysis of PDEs (math.AP)MathematicsBMO
researchProduct

Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces

2020

This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with…

codimension-one rectifiabilitysmooth hypersurface1ryhmäteoriaIntrinsic Lipschitz graphIntrinsic rectifiable setsubmanifoldsdifferentiaaligeometriaIntrinsic Cintrinsic Lipschitz graphCarnot groupsSmooth hypersurfaceMathematics::Metric Geometryintrinsic rectifiable setmittateoriaCodimension-one rectifiabilityCarnot groups; Codimension-one rectifiability; Intrinsic C; 1; submanifolds; Intrinsic Lipschitz graph; Intrinsic rectifiable set; Smooth hypersurface
researchProduct

Two examples related to conical energies

2022

In a recent article we introduced and studied conical energies. We used them to prove three results: a characterization of rectifiable measures, a characterization of sets with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular integral operators. In this note we give two examples related to sharpness of these results. One of them is due to Joyce and M\"{o}rters, the other is new and could be of independent interest as an example of a relatively ugly set containing big pieces of Lipschitz graphs.

matematiikkasingular integral operatorsMetric Geometry (math.MG)Articlesbig pieces of Lipschitz graphsquantitative rectifiabilityconical densityMathematics - Metric GeometryMathematics - Classical Analysis and ODEs28A75 (Primary) 28A78 42B20 (Secondary)Classical Analysis and ODEs (math.CA)FOS: MathematicsCone
researchProduct

ε-approximability of harmonic functions in Lp implies uniform rectifiability

2019

mittateoriaharmoninen analyysiuniform rectifiabilityharmonic functions
researchProduct

Uniform rectifiability and ε-approximability of harmonic functions in Lp

2020

Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that pointwise, L∞ and Lp type ε-approximability properties of harmonic functions are all equivalent and they characterize uniform rectifiability for codimension 1 Ahlfors–David regular sets. Our results and techniques are generalizations of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell and S. Mayboroda. peerReviewed

ε-approximabilitypotentiaaliteoriaharmonic functions.mittateoriaCarleson measuresharmoninen analyysiuniform rectifiability
researchProduct